7-PHENYLACETOXY COUMARIN FROM LIMONIA CRENULATA

A. CHATTERJEE, S. SARKAR and J. N. SHOOLERY*

Department of Pure Chemistry, University College of Science, 92 A.P.C. Road, Calcutta-700009, India; *NMR Applications Laboratory, Varian Instrument Group, Palo Alto Division, 611 Hansen Way, Palo Alto, CA 94303, U.S.A.

(Received 21 January 1980)

Key Word Index - Limonia crenulata; Rutaceae; 7-phenylacetoxycoumarin.

Abstract—A new coumarin, 7-phenylacetoxycoumarin, has been isolated from *Limonia crenulata* along with luvangetin, xanthotoxin, umbelliferone and limonin. This is the first report of a coumarin phenol ester from a natural source.

INTRODUCTION

In continuation of our work on naturally occurring coumarins [1-3] we have examined the aerial parts of Limonia crenulata Roxb. (Rutaceae), a plant which grows abundantly in the Himalayan range and is used extensively in the treatment of epilepsy [4]. In the course of this investigation we have isolated a new compound, 7-phenylacetoxycoumarin, the complete characterization of which is described in the present communication.

RESULTS AND DISCUSSION

The new compound $C_{17}H_{12}O_4$ (M* 280), showed the typical UV absorption of a 7-oxygenated coumarin (λ_{\max}^{EIOH} . 214, 283 and 313 nm: $\log \varepsilon$ 4.28, 4.02 and 3.98). In alkali ($\lambda_{\max}^{NOH/EIOH}$. 216, 229 and 377.5; $\log \varepsilon$ 4.17, 3.99 and 4.33) the spectrum was similar to that of umbelliferone. Several structural features could be ascertained from its 80 MHz 1H NMR spectrum (CDCl₃). The latter exhibited coumarinic doublets at δ 6.25 (C_3 -H) and 7.54 (C_4 -H) (J = 9.6 Hz), the C_5 -H appeared as a doublet at 7.32 (J = 8.3 Hz) and the C_6 -H as a doublet at 6.96 (J = 2.2 Hz) was attributed to the C_8 -H while the signal at 3.79 (2 H, s) and the five-proton singlet at 7.25 indicated the possibility of the presence of a $-CH_2$ Ph group in the molecule. On this basis structure 1 was assigned to this new coumarin.

$$\begin{array}{c} H_{C} & H_{D} \\ H_{B} & & & \\ & & & \\ O & & & \\ & & & \\ O & & & \\ & & & \\ O & & \\ & & & \\ & & & \\ O & & \\ & & & \\ & & \\ O & & \\ & & \\ & & \\ O & & \\ \end{array}$$

Table 1. Long range coupling constants of the protons H_A, H_B, H_C, H_D and H_E in 7-phenylacetoxycoumarin

Proton number	Coupling constants (Hz)
H _A	$J_{AB} = 2.2$
	$J_{\rm AC}=J_{\rm AD}=0.7$
	$J_{AE}=0.1$
Hв	$J_{AB}=2.2$
	$J_{\rm BC}=8.3$
	$J_{\rm BE}=0.1$
$H_{\rm c}$	$J_{\rm BC}=8.3$
	$J_{\rm CD} = 0.3$
	$J_{\rm AC}=0.7$
H_{D}	$J_{\rm DE}=9.6$
	$J_{\rm CD}=0.3$
	$J_{\rm AD}=0.7$
$H_{\rm E}$	$J_{\rm DE}=9.6$
	$J_{AE} = 0.1$
	$J_{BE}=0.1$

The presence of the ABC system was recognised by the plot expansions on a 1.0 Hz/cm scale. The long range couplings of the protons, H_A , H_B , H_C , H_D and H_F (Table 1) through 4, 5 and 6 bonds of 0.3, 0.7 and 0.1 Hz are typical of the expected patterns of a 7-substituted coumarin.

The proposed structure 1 received unambiguous support from the ¹³C NMR spectrum of the compound and also from a comparison of the carbon signals with those of coumarin (2). The shift in the values of the carbons C-5, C-6, C-7, C-8 and C-10 in 1a compared to that in coumarin 2 are due to the presence of the acetoxy group.

I was subsequently synthesized from phenylacetic acid and umbelliferone and found to be identical with the natural product. This is the first report of a coumarin phenol ester from a natural source. 2220 Short Reports

Phenylacetic acid Phenylacetyl chloride 7-Phenylacetoxycoumarin

EXPERIMENTAL

Mps are uncorr. UV spectra were measured in EtOH and NMR spectra were determined in CDCl₃ using TMS as int. standard. Column chromatography was carried out with Si gel (Gouri Chemical Works, 60–100 mesh) and TLC with Si gel G (Merck). Na₂SO₄ was used to dry the organic solvents and samples were routinely dried over P₂O₅ for 24 hr.

Isolation of chemical constituents. Air-dried and powdered aerial parts of Limonia crenulata (5 kg) were extracted with petrol $(60-80^{\circ})$ in Soxhlet extractor and the defatted material percolated at room temp, with EtOH. The concd petrol extract on chromatography afforded luvangetin and xanthotoxin from the C_6H_6 eluates and limonin from the 5% methanolic CHCl₃ eluate.

7-Phenylacetoxycoumarin (1) and umbelliferone. The EtOH concentrate afforded 7-phenylacetoxycoumarin (1) in the C_6H_6 -CHCl₃ (3:1) eluate. It was purified by further chromatography, mp 101° (colourless needles from MeOH); yield: 0.00002%; m/e 280 (M $^+$, 16%), 162 (50%), 134 (34%), 133 (18%), 119 (52%), 118 (92%), 105 (28%), 91 (100%) and 77 (32%). The 10% methanolic CHCl₃ eluate yielded umbelliferone.

Synthesis of 7-phenylacetoxycoumarin (1). Phenylacetic acid (500 mg) and freshly dist. thionyl chloride (1 ml) was heated over a steam bath for 1 hr in dry conditions. Excess thionyl chloride was removed under red. pres., umbelliferone (150 mg) added and the mixture refluxed for 2 hr. The reaction mixture was then cooled in

an ice bath, poured over crushed ice, stirred and extracted with CHCl₃ ($3 \times 25 \,\text{ml}$). The total CHCl₃ extract was washed with 1% aq. NaOH, followed by H₂O. The CHCl₃ concentrate upon chromatography afforded 7-phenylacetoxycoumarin (1) (yield: 55%), mp 100 101° (MeOH). The synthetic coumarin was found to be identical with the natural compound from mp, mmp, co-TLC and superimposable IR spectra.

Acknowledgements - The authors express their sincere thanks to Sri P. Ghosh for spectral measurements and to the Central Council of Research in Ayurveda and Siddha for financial assistance to S.S.

REFERENCES

- 1. Chatterjee, A., Banerji, J. and Basa, S. C. (1972) Tetrahedron 28, 5175
- Majumder, P. L., Sengupta, G. C., Dinda, B. N. and Chatterjee, A. (1974) Phytochemistry 13, 1929.
- 3. Chatterjee, A., Sen, R. and Ganguli, D. (1978) *Phytochemistry* 17, 328
- Chopra, R. N., Nayer, S. L., Chopra, I. C. (1956) Glossary of Indian Medicinal Plants. Council of Scientific and Industrial Research, New Delhi.